Water () is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" and the "solvent of life". It is the most abundant substance on the surface of Earth and the only common substance to exist as a ice, liquid, and water vapor on Earth's surface. It is also the third most abundant molecule in the universe (behind Hydrogen and carbon monoxide).
Water molecules form hydrogen bonds with each other and are strongly polar. This polarity allows it to dissociate ions in salts and bond to other polar substances such as alcohols and acids, thus dissolving them. Its hydrogen bonding causes its many unique properties, such as having a solid form less dense than its liquid form, a relatively high boiling point of 100 °C for its molar mass, and a high heat capacity.
Water is amphoteric, meaning that it can exhibit properties of an acid or a base, depending on the pH of the solution that it is in; it readily produces both and hydroxide ions. Related to its amphoteric character, it undergoes self-ionization. The product of the activities, or approximately, the concentrations of and is a constant, so their respective concentrations are inversely proportional to each other.
Under standard conditions, water is primarily a liquid, unlike other analogous hydrides of the oxygen family, which are generally gaseous. This unique property of water is due to hydrogen bonding. The molecules of water are constantly moving concerning each other, and the hydrogen bonds are continually breaking and reforming at timescales faster than 200 femtoseconds (2 × 10−13 seconds). However, these bonds are strong enough to create many of the peculiar properties of water, some of which make it integral to life.
Water also forms a supercritical fluid. The critical temperature is 647 kelvin and the critical pressure is 22.064 MPa. In nature, this only rarely occurs in extremely hostile conditions. A likely example of naturally occurring supercritical water is in the hottest parts of deep water hydrothermal vents, in which water is heated to the critical temperature by volcanic plumes and the critical pressure is caused by the weight of the ocean at the extreme depths where the vents are located. This pressure is reached at a depth of about 2200 meters: much less than the mean depth of the ocean (3800 meters).
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher. This property confers resistance to melting on the ice of and drift ice. Before and since the advent of mechanical refrigeration, ice was and still is in common use for retarding food spoilage.
The specific heat capacity of ice at −10 °C is 2030 J/(kg·K) and the heat capacity of steam at 100 °C is 2080 J/(kg·K).
Under increasing pressure, ice undergoes a number of transitions to other polymorphs with higher density than liquid water, such as ice II, ice III, high-density amorphous ice (HDA), and very-high-density amorphous ice (VHDA). The unusual density curve and lower density of ice than of water is essential for much of the life on earth—if water were most dense at the freezing point, then in winter the cooling at the surface would lead to convective mixing. Once 0 °C are reached, the water body would freeze from the bottom up, and all life in it would be killed. Furthermore, given that water is a good thermal insulator (due to its heat capacity), some frozen lakes might not completely thaw in summer. As it is, the inversion of the density curve leads to a stable layering for surface temperatures below 4 °C, and with the layer of ice that floats on top insulating the water below, even e.g., Lake Baikal in central Siberia freezes only to about 1 m thickness in winter. In general, for deep enough lakes, the temperature at the bottom stays constant at about 4 °C (39 °F) throughout the year (see diagram).
As the surface science of saltwater begins to freeze (at −1.9 °C for normal salinity seawater, 3.5%) the ice that forms is essentially salt-free, with about the same density as freshwater ice. This ice floats on the surface, and the salt that is "frozen out" adds to the salinity and density of the seawater just below it, in a process known as brine rejection. This denser saltwater sinks by convection and the replacing seawater is subject to the same process. This produces essentially freshwater ice at −1.9 °C on the surface. The increased density of the seawater beneath the forming ice causes it to sink towards the bottom. On a large scale, the process of brine rejection and sinking cold salty water results in ocean currents forming to transport such water away from the Poles, leading to a global system of currents called the thermohaline circulation.
As a gas, water vapor is completely miscible with air. On the other hand, the maximum water vapor pressure that is thermodynamically stable with the liquid (or solid) at a given temperature is relatively low compared with total atmospheric pressure. For example, if the vapor's partial pressure is 2% of atmospheric pressure and the air is cooled from 25 °C, starting at about 22 °C, water will start to condense, defining the dew point, and creating fog or dew. The reverse process accounts for the fog burning off in the morning. If the humidity is increased at room temperature, for example, by running a hot shower or a bath, and the temperature stays about the same, the vapor soon reaches the pressure for phase change and then condenses out as minute water droplets, commonly referred to as steam.
A saturated gas or one with 100% relative humidity is when the vapor pressure of water in the air is at equilibrium with vapor pressure due to (liquid) water; water (or ice, if cool enough) will fail to lose mass through evaporation when exposed to saturated air. Because the amount of water vapor in the air is small, relative humidity, the ratio of the partial pressure due to the water vapor to the saturated partial vapor pressure, is much more useful. Vapor pressure above 100% relative humidity is called supersaturated and can occur if the air is rapidly cooled, for example, by rising suddenly in an updraft.
The bulk modulus of water is about 2.2 GPa. The low compressibility of non-gasses, and of water in particular, leads to their often being assumed as incompressible. The low compressibility of water means that even in the deep oceans at depth, where pressures are 40 MPa, there is only a 1.8% decrease in volume.
The bulk modulus of water ice ranges from 11.3 GPa at 0 K up to 8.6 GPa at 273 K. The large change in the compressibility of ice as a function of temperature is the result of its relatively large thermal expansion coefficient compared to other common solids.
Due to the existence of many polymorphs (forms) of ice, water has other triple points, which have either three polymorphs of ice or two polymorphs of ice and liquid in equilibrium. Gustav Heinrich Johann Apollon Tammann in Göttingen produced data on several other triple points in the early 20th century. Kamb and others documented further triple points in the 1960s.
!Phases in stable equilibrium
!Pressure
!Temperature
Because water is such a good solvent, it almost always has some solute dissolved in it, often a salt. If water has even a tiny amount of such an impurity, then the ions can carry charges back and forth, allowing the water to conduct electricity far more readily.
It is known that the theoretical maximum electrical resistivity for water is approximately 18.2 MΩ·cm (182 kilohm·m) at 25 °C. This figure agrees well with what is typically seen on reverse osmosis, ultrafiltration and deionized ultra-pure water systems used, for instance, in semiconductor manufacturing plants. A salt or acid contaminant level exceeding even 100 parts per trillion (ppt) in otherwise ultra-pure water begins to noticeably lower its resistivity by up to several kΩ·m.
In pure water, sensitive equipment can detect a very slight electrical conductivity of 0.05501 ± 0.0001 μS/Centimeter at 25.00 °C. Water can also be electrolysis into oxygen and hydrogen gases but in the absence of dissolved ions this is a very slow process, as very little current is conducted. In ice, the primary charge carriers are protons (see proton conductor).
Ice was previously thought to have a small but measurable conductivity of 1 S/cm, but this conductivity is now thought to be almost entirely from surface defects, and without those, ice is an insulator with an immeasurably small conductivity.
Another consequence of its structure is that water is a polar molecule. Due to the difference in electronegativity, a bond dipole moment points from each H to the O, making the oxygen partially negative and each hydrogen partially positive. A large molecular dipole, points from a region between the two hydrogen atoms to the oxygen atom. The charge differences cause water molecules to aggregate (the relatively positive areas being attracted to the relatively negative areas). This attraction, , explains many of the properties of water, such as its solvent properties.
Although hydrogen bonding is a relatively weak attraction compared to the covalent bonds within the water molecule itself, it is responsible for several of the water's physical properties. These properties include its relatively high melting point and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules. In contrast, hydrogen sulfide (), has much weaker hydrogen bonding due to sulfur's lower electronegativity. is a gas at room temperature, despite hydrogen sulfide having nearly twice the molar mass of water. The extra bonding between water molecules also gives liquid water a large specific heat capacity. This high heat capacity makes water a good heat storage medium (coolant) and heat shield.
Water also has high adhesion properties because of its polar nature. On clean, smooth glass the water may form a thin film because the molecular forces between glass and water molecules (adhesive forces) are stronger than the cohesive forces. In biological cells and , water is in contact with membrane and protein surfaces that are hydrophilic; that is, surfaces that have a strong attraction to water. Irving Langmuir observed a strong repulsive force between hydrophilic surfaces. To dehydrate hydrophilic surfaces—to remove the strongly held layers of water of hydration—requires doing substantial work against these forces, called hydration forces. These forces are very large but decrease rapidly over a nanometer or less. They are important in biology, particularly when cells are dehydrated by exposure to dry atmospheres or to extracellular freezing.
When an ionic or polar compound enters water, it is surrounded by water molecules (Solvation). The relatively small size of water molecules (~3 angstroms) allows many water molecules to surround one molecule of solute. The partially negative dipole ends of the water are attracted to positively charged components of the solute, and vice versa for the positive dipole ends.
In general, ionic and polar substances such as , alcohols, and salts are relatively soluble in water, and nonpolar substances such as fats and oils are not. Nonpolar molecules stay together in water because it is energetically more favorable for the water molecules to hydrogen bond to each other than to engage in van der Waals interactions with non-polar molecules.
An example of an ionic solute is sodium chloride; the sodium chloride, NaCl, separates into and , each being surrounded by water molecules. The ions are then easily transported away from their crystal lattice into solution. An example of a nonionic solute is sucrose. The water dipoles make hydrogen bonds with the polar regions of the sugar molecule () and allow it to be carried away into solution.
However, there is an alternative theory for the structure of water. In 2004, a controversial paper from Stockholm University suggested that water molecules in the liquid state typically bind not to four but only two others; thus forming chains and rings. The term "string theory of water" (which is not to be confused with the string theory of physics) was coined. These observations were based upon X-ray absorption spectroscopy that probed the local environment of individual oxygen atoms.
The equilibrium constant for this reaction, known as the ionic product of water, , has a value of about at 25 °C. At neutral pH, the concentration of the hydroxide ion () equals that of the (solvated) hydrogen ion (), with a value close to 10−7 mol L−1 at 25 °C. See data page for values at other temperatures.
The thermodynamic equilibrium constant is a quotient of thermodynamic activities of all products and reactants including water:
Water ice can form clathrate compounds, known as clathrate hydrates, with a variety of small molecules that can be embedded in its spacious crystal lattice. The most notable of these is methane clathrate, 4 , naturally found in large quantities on the ocean floor.
Deuterium oxide, , is also known as heavy water because of its higher density. It is used in as a neutron moderator. Tritium is radioactive, decaying with a half-life of 4500 days; exists in nature only in minute quantities, being produced primarily via cosmic ray-induced nuclear reactions in the atmosphere. Water with one protium and one deuterium atom occur naturally in ordinary water in low concentrations (~0.03%) and in far lower amounts (0.000003%) and any such molecules are temporary as the atoms recombine.
The most notable physical differences between and , other than the simple difference in specific mass, involve properties that are affected by hydrogen bonding, such as freezing and boiling, and other kinetic effects. This is because the nucleus of deuterium is twice as heavy as protium, and this causes noticeable differences in bonding energies. The difference in boiling points allows the isotopologues to be separated. The self-diffusion coefficient of at 25 °C is 23% higher than the value of . Because water molecules exchange hydrogen atoms with one another, hydrogen deuterium oxide (DOH) is much more common in low-purity heavy water than pure dideuterium monoxide .
Consumption of pure isolated may affect biochemical processes—ingestion of large amounts impairs kidney and central nervous system function. Small quantities can be consumed without any ill-effects; humans are generally unaware of taste differences,
but sometimes report a burning sensation
or sweet flavor.
Very large amounts of heavy water must be consumed for any toxicity to become apparent. Rats, however, are able to avoid heavy water by smell, and it is toxic to many animals.
Light water refers to deuterium-depleted water (DDW), water in which the deuterium content has been reduced below the standard level.
Water is far more prevalent in the outer Solar System, beyond a point called the frost line, where the Sun's radiation is too weak to vaporize solid and liquid water (as well as other elements and chemical compounds with relatively low melting points, such as methane and ammonia). In the inner Solar System, planets, asteroids, and moons formed almost entirely of metals and silicates. Water has since been delivered to the inner Solar System via an as-yet unknown mechanism, theorized to be the impacts of asteroids or comets carrying water from the outer Solar System, where bodies contain much more water ice. The difference between planetary bodies located inside and outside the frost line can be stark. Earth's mass is 0.000023% water, while Tethys, a moon of Saturn, is almost entirely made of water.
In the reaction with ammonia, , water donates a ion, and is thus acting as an acid:
Because the oxygen atom in water has two , water often acts as a Lewis base, or electron-pair donor, in reactions with , although it can also react with Lewis bases, forming hydrogen bonds between the electron pair donors and the hydrogen atoms of water. HSAB theory describes water as both a weak hard acid and a weak hard base, meaning that it reacts preferentially with other hard species:
When a salt of a weak acid or of a weak base is dissolved in water, water can partially hydrolysis the salt, producing the corresponding base or acid, which gives aqueous solutions of soap and baking soda their basic pH:
Some other reactive metals, such as aluminium and beryllium, are oxidized by water as well, but their oxides adhere to the metal and form a passive protective layer. Note that the rusting of iron is a reaction between iron and oxygen that is dissolved in water, not between iron and water.
Water can be oxidized to emit oxygen gas, but very few oxidants react with water even if their reduction potential is greater than the potential of . Almost all such reactions require a catalyst. An example of the oxidation of water is:
The anode half reaction is:
The gases produced bubble to the surface, where they can be collected or ignited with a flame above the water if this was the intention. The required potential for the electrolysis of pure water is 1.23 V at 25 °C. The operating potential is actually 1.48 V or higher in practical electrolysis.
Gilbert Newton Lewis isolated the first sample of pure heavy water in 1933.
The properties of water have historically been used to define various temperature scales. Notably, the Kelvin, Celsius, Rankine scale, and Fahrenheit scales were, or currently are, defined by the freezing and boiling points of water. The less common scales of Delisle scale, Newton scale, Réaumur, and Rømer were defined similarly. The triple point of water is a more commonly used standard point today.
The simplest systematic name of water is hydrogen oxide. This is analogous to related compounds such as hydrogen peroxide, hydrogen sulfide, and deuterium oxide (heavy water). Using chemical nomenclature for type I ionic binary compounds, water would take the name hydrogen monoxide, but this is not among the names published by the International Union of Pure and Applied Chemistry (IUPAC). Another name is dihydrogen monoxide, which is a rarely used name of water, and mostly used in the dihydrogen monoxide parody.
Other systematic names for water include hydroxic acid, hydroxylic acid, and hydrogen hydroxide, using acid and base names. None of these exotic names are used widely. The polarized form of the water molecule, , is also called hydron hydroxide by IUPAC nomenclature.
Water substance is a rare term used for H2O when one does not wish to specify the phase of matter (liquid water, water vapor, some form of ice, or a component in a mixture) though the term water is also used with this general meaning.
Oxygen dihydride is another way of referring to water, but modern usage often restricts the term "hydride" to ionic compounds (which water is not).
Triple point
+The various triple points of water
liquid water, ice Ih, and water vapor 611.657 Pa 273.16 K (0.01 °C) liquid water, ice Ih, and ice III 209.9 MPa 251 K (−22 °C) liquid water, ice III, and ice V 350.1 MPa −17.0 °C liquid water, ice V, and ice VI 632.4 MPa 0.16 °C ice Ih, Ice II, and ice III 213 MPa −35 °C ice II, ice III, and ice V 344 MPa −24 °C ice II, ice V, and ice VI 626 MPa −70 °C
Melting point
Electrical properties
Electrical conductivity
Polarity and hydrogen bonding
Cohesion and adhesion
Surface tension
Capillary action
Water as a solvent
Quantum tunneling
Electromagnetic absorption
Structure
Molecular structure
Chemical properties
Self-ionization
However, for dilute solutions, the activity of a solute such as H3O+ or OH− is approximated by its concentration, and the activity of the solvent H2O is approximated by 1, so that we obtain the simple ionic product
Geochemistry
Acidity in nature
Isotopologues
Occurrence
Reactions
Acid–base reactions
Ligand chemistry
Organic chemistry
Water in redox reactions
Electrolysis
History
Nomenclature
See also
Footnotes
Notes
Bibliography
Further reading
External links
|
|